
AT&T Bell Laboratories Technical Journal
Vol. 63, No.8, October 1984
Printed in U.S.A.

The UNIX System:

The Evolution of the UNIX Time-sharing System

 By D. M. RITCHIE*

 This paper presents a brief history of the early development of the UNIX'"
operating system. It concentrates on the evolution of the file system, the
process-control mechanism, and the idea of pipelined commands. Some attention
is paid to social conditions during the development of the system. This
paper is reprinted from Lecture Notes on Computer Science, No. 79, Language
Design and Programming Methodology, Springer-Verlag, 1980.

I. INTRODUCTION

 During the past few years, the UNIX operating system has come
into wide use, so wide that its very name has become a trademark of
Bell Laboratories. Its important characteristics have become known
to many people. It has suffered much rewriting and tinkering since
the first publication describing it in 1974/ but few fundamental
changes. However, UNIX was born in 1969 not 1974, and the account
of its development makes a little-known and perhaps instructive story.
This paper presents a technical and social history of the evolution of
the system.

II. ORIGINS

 For computer science at Bell Laboratories, the period 1968-1969
was somewhat unsettled. The main reason for this was the slow,
though clearly inevitable, withdrawal of the Labs from the Multics
project. To the Labs computing community as a whole, the problem
was the increasing obviousness of the failure of Multics to deliver
promptly any sort of usable system, let alone the panacea envisioned
earlier. For much of this time, the Murray Hill Computer Center was

* AT&T Bell Laboratories.

 1577

extricating themselves not only from an operating system development
effort that had failed, but from running the local Computation Center.
Thus it may have seemed that buying a machine such as we suggested
might lead on the one hand to yet another Multics, or on the other, if
we produced something useful, to yet another Comp Center for them
to be responsible for.

 Besides the financial agitations that took place in 1969, there was
technical work also. Thompson, R. H. Canaday, and Ritchie developed,
on blackboards and scribbled notes, the basic design of a file system
that was later to become the heart of UNIX. Most of the design was
Thompson's, as was the impulse to think about file systems at all, but
I believe I contributed the idea of device files. Thompson's itch for
creation of an operating system took several forms during this period;
he also wrote (on Multics) a fairly detailed simulation of the performance
of the proposed file system design and of paging behavior of
programs. In addition, he started work on a new operating system for
the GE 645, going as far as writing an assembler for the machine and
a rudimentary operating system kernel whose greatest achievement,
so far as I remember, was to type a greeting message. The complexity
of the machine was such that a mere message was already a fairly
notable accomplishment, but when it became clear that the lifetime of
the 645 at the Labs was measured in months, the work was dropped.

 Also during 1969, Thompson developed the game of 'Space Travel.'
First written on Multics, then transliterated into Fortran for GECOS
(the operating system for the GE, later Honeywell, 635), it was nothing
less than a simulation of the movement of the major bodies of the
Solar System, with the player guiding a ship here and there, observing
the scenery, and attempting to land on the various planets and moons.
The GECOS version was unsatisfactory in two important respects:
first, the display of the state of the game was jerky and hard to control
because one had to type commands at it, and second, a game cost
about $75 for CPU time on the big computer. It did not take long,
therefore, for Thompson to find a little-used PDP-7 computer with an
excellent display processor; the whole system was used as a Graphical
terminal. He and I rewrote Space Travel to run on this machine.
The undertaking was more ambitious than it might seem; because we
disdained all existing software, we had to write a floating-point arithmetic
package, the pointwise specification of the graphic characters
for the display, and a debugging subsystem that continuously displayed
the contents of typed-in locations in a corner of the screen. All this
was written in assembly language for a cross-assembler that ran under
GECOS and produced paper tapes to be carried to the PDP-7.
Space Travel, though it made a very attractive game, served mainly
as an introduction to the clumsy technology of preparing programs for

 TIME-SHARING 1579

of two programs? What is the appropriate notation for invoking a
program with two parallel output streams?

 I mentioned above in the section on 10 redirection that Multics
provided a mechanism by which 10 streams could be directed through
processing modules on the way to (or from) the device or file serving
as source or sink. Thus it might seem that stream-splicing in Multics
was the direct precursor of UNIX pipes, as Multics 10 redirection
certainly was for its UNIX version. In fact I do not think this is true,
or is true only in a weak sense. Not only were coroutines well-known
already, but their embodiment as Multics spliceable 10 modules required
that the modules be specially coded in such a way that they
could be used for no other purpose. The genius of the UNIX pipeline
is precisely that it is constructed from the very same commands used
constantly in simplex fashion. The mental leap needed to see this
possibility and to invent the notation is large indeed.

IX. HIGH-LEVEL LANGUAGES

 Every program for the original PDP-7 UNIX was written in assembly
language, and bare assembly language it was-for example, there
were no macros. Morever, there was no loader or link-editor, so every
program had to be complete in itself. The first interesting language to
appear was a version of McClure's TMGll that was implemented by
McIlroy. Soon after TMG became available, Thompson decided that
we could not pretend to offer a real computing service without Fortran,
so he sat down to write a Fortran in TMG. As I recall, the intent to
handle Fortran lasted about a week. What he produced instead was a
definition of and a compiler for the new language B.12 B was much
influenced by the BCPL language;" other influences were Thompson's
taste for spartan syntax, and the very small space into which the
compiler had to fit. The compiler produced simple interpretive code;
although it and the programs it produced were rather slow, it made
life much more pleasant. Once interfaces to the regular system calls
were made available, we began once again to enjoy the benefits of
using a reasonable language to write what are usually called 'systems
programs': compilers, assemblers, and the like. (Although some might
consider the PL/I we used under Multics unreasonable, it was much
better than assembly language.) Among other programs, the PDP-7 B
cross-compiler for the PDP-ll was written in B, and in the course of
time, the B compiler for the PDP-7 itself was transliterated from
TMG into B.

 When the PDP-ll arrived, B was moved to it almost immediately.
In fact, a version of the multi-precision 'desk calculator' program de
was one of the earliest programs to run on the PDP-ll, well before

 TIME-SHARING 1591

