
Software Architecture for Parallel Processors Page 1

SOFTWARE ARCHITECTURE FOR PARALLEL PROCESSORS
W. C. Cave† & R.E. Wassmer† - August 17, 2016

BACKGROUND

 In the early Renaissance, artists sketched buildings that represented their imagined plans.
Their renderings contained no measurements. Builders were expected to follow the illustrations
and work out the details. There were no engineering principles or drawings. Even now, one
need not go to engineering school to design a dog house. It needs no drawings or measurements.

 As buildings became large and more complex, the artist’s approach was forced to change,
eventually becoming known as architectural engineering. By careful design of many levels of
detail, an engineering process has evolved for solving construction problems - before the
construction begins. Improvements are implemented on a drawing board and in written
specifications, avoiding costly mistakes, huge delays and corresponding cost overruns.

 In the ACM article, The Emperor with No Clothes, [1], Henry Ledgard quoted W.
Edwards Deming who stated “If you can’t measure it, you can’t improve it,” see [8] The same
point was made by David Parnas, [2], 10 years earlier: “Without measures from repeatable
experiments, software is not a science.” Although an initiator of Computer Science curricula,
Parnas said: “most CS PhDs are not scientists; they neither understand nor apply the methods of
experimental science.” Ledgard and Parnas are highly knowledgeable in computer languages.

 At the top is Grace Hopper, who wrote the first compiler while at Univac in 1952. In
1959, after the CODASYL conference initiated the development of COBOL, Hopper’s group at
Univac spearheaded the language design based upon her own FLOW-MATIC language, see
Beyer, [3]. Hopper stated that programs should be written in a language close to English rather
than those close to machine code or assembler, see Ledgard [9]. This was captured in the new
language, COBOL, which would become the most ubiquitous data system language to date.
Hopper went on to develop CMS-2, a language for the U.S. Navy, adding math and scientific
facilities to COBOL. CMS-2 contained the same hierarchical data and hierarchical instruction
syntax that contributes huge productivity gains and applies directly to parallel processing.

 But now the time has come to apply engineering science to software. The dog house
approach to memorizing snippets of code does not provide the knowledge required to design
complex software systems and simulations. To meet pressing requirements for increased speed,
computers have gone parallel with large numbers of processors on each chip, and many chips on
a board. Today’s applications are the equivalent of skyscrapers. Moving the software field
forward into an engineering discipline is an obvious necessity.

INTRODUCTION

 This paper describes an engineering approach to software based on a theory that is an
extension of mathematics. Achieving speed in development and support - as well as at run time -
requires a solid science foundation. This implies conducting repeatable laboratory experiments
to ensure that theories are adopted based on fair comparison of carefully measured results.

† Visual Software International - www.VisiSoft.com

Software Architecture for Parallel Processors Page 2

 When designing a complex system, one breaks it into modules to gain architectural
independence of various operations. As individual modules become more complex, they are
layered into hierarchies. Without a clear hierarchy of modules, it is difficult to understand the
bottom layer of detail - where careful design decisions are made. When moving from scalars
into complex state spaces, one must be able to understand the hierarchies of a space in order to
design the “best” algorithms, i.e., those that are fast and easy to understand. This requires
visualization of hierarchies that directly represent the space.

 When dealing with complex software module architectures, one must be able to visualize
the hierarchies of functions that simplify and speed operations. This implies the ability to
observe directly how complex data structures are shared with complex sets of instructions. In
VSE, this is accomplished by separation of data from instructions, also known as the “Separation
Principle,” [4]. This separation has existed in computer hardware design since the RISC chip.
Having separated instructions (processes) from data (memory resources), one can represent
software architectures using engineering drawings. The intent of this paper is to show how
architecture is as important to software as it is to the design and construction of physical
structures and devices.

APPLICATION SPACE ARCHITECTURE - THE ISA FOR PARALLEL PROCESSORS

 The first stored program computer (the MANIAC) was used to design the first hydrogen
bomb. It required solving a much larger system of equations. This required a relatively huge
increase in memory to store the data as well as instructions required to meet the speed constraints.
The MANIAC design was based on von Neumann’s Instruction Set Architecture (ISA),
developed to support a broad base of applications. These first computer designs made it clear
that memory size was the major factor in achieving speed.

 To solve the parallel processor software technology problem, one must take maximum
advantage of the inherent parallelism in each particular application to minimize running time.
This requires designing the best spaces in which to map the inherent parallelism to solve the
problem. As shown in Figure 2, this requires mapping the application requirements into a
software space that is defined by the software development environment. This environment must
support ease of translation of the application requirements into a software language. It must also
map into the seven layer model for software depicted in Figure 1.

APPLICATION
SPACE

SOFTWARE
SPACE

HARDWARE
SPACE

HUMAN
LANGUAGE

TRANSLATION

COMPUTER
LANGUAGE

TRANSLATION

SOFTWARE_SPACES 02/01/16

Figure 1. The ASA spaces of software design.

Software Architecture for Parallel Processors Page 3

Software Spaces - An Extension of Mathematics

 Having defined an application space, one can focus on the design of a software space that
meets the requirements and makes optimal use of the hardware space. Demanding applications
require the breakthrough speeds of advanced parallel processors. This implies software spaces
that maximize the simplicity and understandability of the software design while meeting the
application requirements, particularly the speed and accuracy constraints, on the latest parallel
processor hardware technology.

 Software Spaces require an extension of mathematics beyond the concepts of State Space
used in control theory. Once used, the extensions become obvious. The critical differences are
the use of English-like words to represent binary numbers, the use of deep complex hierarchies
representing the necessary data space descriptions, and English-like statements defining
operations that support complex decision processes. These are further defined below.

 With a well designed software space, large parallel processor software systems can be
built and modified easily by people with application expertise. Their knowledge is critical to
decomposing systems with inherent parallelism into easily understood hierarchies - at both the
architectural and language levels. Such knowledge is required to linearize complexity while
maximizing run-time speed.

To achieve these goals, the ASA must support critical properties, a sampling of which follows.

• Spatial Selection - Application systems must be decomposed into a hierarchy of
spaces that simplify understanding of the required transformations. These spaces must
be organized around the system’s events, and effects of interactions of the subsystems.
For complex systems, this requires the deep knowledge of an application expert.

• Spatial Distribution - Independent elements of systems typically share information that
is copied and available directly to each element. Saving memory is an abstraction that
causes delays - waiting for access to shared spatial memory.

• Spatial and Temporal Synchronization - Independent elements of systems that share
information are synchronized based on detailed application event dynamics. These
event dynamics are typically only understood by application experts. Facilities must
exist so these experts can easily represent the required synchronization directly.

• Independence of Modules - Systems must be decomposed into maximally independent
modules. This is apparent with interactive systems, and easily implemented following
the physical dynamics of the independent elements of the application directly.

• Understandability of Modules - Modules must be easily understood by other than the
original author. This implies following the principles described by Shannon in his
work on Theory of Communications and by famous language designer Grace Hopper.
For example, in software:

− Names identifying spatial vectors, subvectors and elements must maximize
clarity and understanding of the required transformations.

− Functions must be specified explicitly as opposed to implicitly.

• Hierarchy of Modules - Module decomposition must follow a hierarchy that relates
directly to the run-time operation of the system.

Software Architecture for Parallel Processors Page 4

• Orthogonality of Software Design - Software design of a non-sequential system is
typically orthogonal to the organization of its functional requirements. However, a
good software design typically follows directly from the physical dynamics of the
application. This is particularly important with interactive systems.

 Resources can be dedicated to a single process, shared by more than one process, use
different areas of memory, be shared across tasks or simulations, or be shared across multiple
computers. Resources are also used to define external files, including fixed or variable length
records, sequential or direct file access methods, and binary or printable text files. These
resource types are defined below.

KEY CONCEPTS FROM PROVEN THEORIES

Software Spaces For Parallel Processing

 The development environment that people share is critical, especially the tools they use to
create and communicate their parts of the design. The best examples of such tools are
Computer-Aided Design (CAD) systems. This is stated emphatically by Broy, [5] and Poore, [6],
both describing the need for an engineering approach supported by a CAD environment for
developing software. The companion to these papers, [7], describes the contribution of key
concepts from prior proven theories, and introduces VisiSoft®, a CAD environment that makes it
easy to implement the desired concepts.

 To simplify software development on parallel processors, one must be able to map the
inherent parallelism in an application into a software architecture such that processes can run
concurrently. This implies creating processes that are independent, i.e., they share no data
directly. To determine the independence of processes, designers must be able to easily see which
processes share what data (memory resources). This can only be done when the following
Critical Software Architecture Requirements are met:

• Data is organized into a minimum number of structures shared between processes;

• Data structures can be organized into the deep hierarchies required to represent the
best spaces to implement problem solutions;

• Designers can easily determine which processes share what data so they can assure
their independence properties.

 The above requirements are best met when data is separated from instructions at the
language level. This separation supports the design of a data language for organizing large data
structures using deep hierarchies. It also supports design of an instruction language for building
hierarchies of rule structures. Both looping and complex IF ... THEN ... ELSE statements are
then flattened. What is known as Waterfall or Fall through code is gone (without GOTOs).
These properties dramatically simplify design of the best data spaces, and concurrently, the
design of complex algorithms. Both lead to substantial increases in both understanding and run
time speed - on single as well as parallel processors.

Software Architecture for Parallel Processors Page 5

Modularity & Independence

 In engineering, breaking complex systems into independent modules is embodied in the
architecture, a concept that has been misunderstood in software. This is because architecture
describes connectivity, i.e., how a module is connected to other modules. Engineering
architectures represent the time-invariant properties of a system - not flow of control (they are
not flow charts).

 Descriptions of architecture are not convenient using algebraic or linguistic
representations. Like other engineering fields, software architecture is best described with
drawings, depicting how modules are connected. Only then can one visually observe
independence - the key property supporting concurrency. Flow charts, or graphical variations on
flow charts, are of little use when describing the property of independence.

SOFTWARE ARCHITECTURE

 As illustrated in Figure 4, software architects can decompose a system into modules by
grouping resources and processes into an elementary module. Hierarchical modules are created
by grouping modules into higher level modules. Figure 4 shows a library module that is
sufficiently complex to warrant its own drawing. In general, modules are independent if they
share no resources (i.e., they are not connected). Having designed an architecture, developers
can implement the data structures and rules using the resource and process languages. Using
this CAD system, resources and processes may be edited directly on the drawing as illustrated in
Figure 4. The languages do not permit the declaration of scope rules. It is the architecture that
determines how data is shared, and the corresponding independence of modules. Most important,
the languages are designed to provide for deep hierarchies in both data structures and rule
structures to support the Critical Software Architecture Requirements defined above. Without
these language properties, understandability of complex software is difficult.

Parallelism, Architecture, and Decomposition

 When striving to take advantage of the inherent parallelism in a system, one must
determine the architecture of software modules that maximizes concurrency on a parallel
processor. Picking the best set of state vectors is key to solving this problem. Again, best
translates to simplicity of transformations and run-time speed.

 Having selected Generalized State Space as the framework, the mathematical analogy
becomes one of selecting the best set of information vectors (Resources) to represent the system
attributes. Depending upon how the resources are designed and structured, the rules (Processes)
may be much more simple to understand, build, and modify. This is also determined by the
independence properties of the architecture, i.e. the interconnection of resources and processes.

 Unless one has witnessed directly the development of such architectures, the above
discussion may take time to comprehend. Having used it, it is apparent that architecture, as
defined here, is as critical to software design as it is to any other engineering discipline, with or
without parallel processing. But the ability to design good architectures depends directly on the
language. It is why productivity multipliers are very high when using this CAD environment,
especially in the support mode when a new person has to understand what another has built. We
now turn to the critical importance of language in taking advantage of parallel processors.

Software Architecture for Parallel Processors Page 6

Software Spaces & Databases - An Extension Of Mathematics

 The CAD software approach described here follows from Shannon’s Mathematical
Theory Of Communications, [10], also known as Information Theory. Based on the binary
number system and Boolean algebra, this approach defines a mathematical space wherein the set
of characters used to write software is represented by strings of bits or binary numbers. This
approach follows from the State Space framework formulated by control theory engineers to
simplify complex problems in control system design. State Space extends the mathematics of
vectors and matrices, simplifying complex transformations using large vector spaces.

 Simplification of complex mathematical problems hinges on selection of a good space,
reducing complexity of the transformations and the corresponding time to solve the problem.
This is apparent when dealing with multi-dimensional hierarchical spaces as occur in software.
Software spaces are determined by the databases used to support transformations (instructions)
that implement the application. The entire database represents the overall software space.

 If a software application is represented by a continuous-time or discrete-time linear
mathematical model, the software and mathematical solutions are essentially the same. However,
most software applications require actions based upon events as they unfold, being highly
nonlinear. Discrete event simulation provides significant insights into this problem, see [7].
Although time is still the basic coordinate, actions jump to the next scheduled event. The
difference is that actions typically depend upon complex decision processes. e.g.,

IF A IS TRUE ... SCHEDULE PROCESS_A ... ELSE IF B IS TRUE ... SCHEDULE PROCESS_B

 Some of the execution steps may involve solving systems of equations. More
importantly, they will likely contain statements that SCHEDULE a NEW_EVENT in the future.
This facility is necessary in time-based models or real-time systems.

 As illustrated in the next section, software is simply an extension of mathematics. The
corresponding properties of spaces, and the independence of subspaces and coordinates, apply
directly. These properties are critical to designing software architectures containing independent
modules that simplify parallel processing while maximizing speed.

The Separation Principle

 The underlying principle supporting the visualization of software architectures using
engineering drawings is the separation of data from instructions at the language level. Defined in
1982 in the design of the General Simulation System (GSS), this has become known as the
Separation Principle, [4]. The developers of GSS defined the separate languages used to
describe the data structures (Resources) and rule structures (Processes) illustrated above.

 Using the Generalized State Space framework, the Separation Principle is achieved by
storing all data in Resources. Resources are depicted as ovals in architectural drawings as
illustrated in Figure 6. Processes containing instructions that implement transformations are
depicted as rectangles. The lines connecting them determine which processes have access to
what resources. In this figure, each process has a dedicated resource and shared resources.
Transformation 1 has state vector A as input, has state vector B for dedicated use, and shares
state vector C with transformation 2. Therefore, Transformations 1 and 2 are not independent.
As used here, the property of independence ensures that processes running on a parallel
processor produce complete and consistent results for a given set of initial conditions.

Software Architecture for Parallel Processors Page 7

TRANSFORMATIONS 03/13/12

TRANSFORMATION
1

TRANSFORMATION
3

TRANSFORMATION
2

STATE
VECTOR

B

STATE
VECTOR

D

STATE
VECTOR

A

STATE
VECTOR

C

STATE
VECTOR

E

STATE
VECTOR

F

STATE
VECTOR

G

A SEQUENCE OF TRANSFORMATIONS

Figure 2. State vectors and transformations.

 Consider that state vectors C, D, and E have initial values Ci, Di, and Ei. When run on a
single processor (sequential machine), Transformation 2 will produce the same outputs: Co, Do,
and Eo for a given set of inputs every time it runs; i.e., the results will be complete and consistent.
If while it is running, one of the resources is changed from the outside, the results may not be
complete and consistent. This is because the data being accessed is not consistent relative to
Transformation 2. If Transformations 1 and 2 run concurrently, shared state vector C could be
changed by either, rendering the data as recognized by the other as potentially inconsistent.
Therefore, in general, they cannot operate concurrently.

 Similarly, Transformation 2 is directly coupled to Transformation 3 by shared state
vector E, is not independent of it, and thus cannot run concurrently with it. However,
Transformations 1 and 3 can operate concurrently since they share no state vector directly and
are therefore spatially independent. Transformation 2 can operate only when Transformations 1
and 3 are both idle, i.e., they are temporally independent.

 The Separation Principle provides the ability to represent resources and processes using
icons on engineering drawings of software, see Figure 7. Engineering drawings represent the
connectivity of elements; they are not flow charts. They provide an iconic visualization of which
processes share what resources, and therefore their independence. All resources are shared by
pointer. By grouping icons into hierarchies of modules, module independence can be visualized
directly. Figure 7 is a Library type module.

SOFTWARE LANGUAGE

 The requirements for the resource and process languages were driven in part by factors
somewhat akin to those motivating the use of tiling in parallel versions of FORTRAN. These are
to minimize memory management overhead due to swapping processes and paging data. This is
accomplished by maximizing the work done on each processor while running concurrently with
work on the other processors, thus maximizing the PUE.

 To do this, the language must support design of software spaces that simplify the human
translation of inherently parallel physical entities into an organization of independent workloads.
As understood by Grace Hopper, likely the most knowledgeable software language designer, [3],
such organizations are best supported by deep hierarchies of both data and instructions. A
simple example of such a data structure (RESOURCE) is shown in Figure 5.

Software Architecture for Parallel Processors Page 8

Software Architecture for Parallel Processors Page 9

Software Architecture for Parallel Processors Page 10

MESSAGE_TABLE QUANTITY(3)
 1 MESSAGE INDEX INTEGER
 1 MESSAGE ELEMENT QUANTITY(13)
 2 UNIT I INTEGER
 2 SLOT ID INTEGER
 2 MESSAGE_INFORMATION
 3 MESSAGE_TYPE STATUS DATA_OUTPUT
 USER_REQUEST
 3 STATE_S
 4 NUMBER TO BE SENT INTEGER
 4 SEQUENCE_NUMBER INTEGER
 4 MESSAGE_ACTION STATUS SEND, HOLD
 4 AGGREGATE STATE
 5 MESSAGE STATE QUANTITY(7)
 STATUS EMPTY, FULL
 4 INDIVIDUAL STATE REDEFINES AGGREGATE STATE
 5 SEQUENCED MESSAGE
 6 GROUP MESSAGE STATUS EMPTY, FULL
 6 BUDDY MESSAGE STATUS EMPTY, FULL
 6 QUEUED MESSAGE STATUS EMPTY, FULL
 6 RESERVED_MESSAGE STATUS EMPTY, FULL
 6 INTERCOM_MESSAGE STATUS EMPTY, FULL
 5 NON SEQUENCED COMMAND
 6 DATA_INPUT STATUS EMPTY, FULL
 6 USER COMMAND STATUS EMPTY, FULL

Figure 5. Example of a hierarchically structured state vector (RESOURCE).

 Deep hierarchies allow large complex data structures to be moved in a single instruction
fetch, with all of the individual fields directly available to instruction hierarchies as illustrated in
Figures 6, 7, and 8. This provides order of magnitude improvements in single processor speeds
as well as understanding, see the experimental results in Chapter 17 in [7].

PROCESS_CLASS MESSAGE
 IF MESSAGE_ACTION(CONTROL_UNIT, RADIO) IS SEND
 AND MESSAGE TYPE(CONTROL_UNIT, RADIO) IS USER_REQUEST
 MOVE INDIVIDUAL COMMAND(CONTROL_UNIT, RADIO)
 TO AGGREGATE STATE(CONTROL_UNIT, RADIO)
 EXECUTE CHECK_MESSAGE_INDEX .

CHECK_MESSAGE_INDEX
 IF MESSAGE INDEX(TIME_SLOT) IS GREATER THAN ZERO
 SET MESSAGE_ACTION(CONTROL_UNIT, TIME_SLOT) TO HOLD
 SEQUENCE_NUMBER(CONTROL_UNIT, TIME_SLOT) = MESSAGE INDEX(TIME_SLOT)
 MOVE AGGREGATE STATE(CONTROL_UNIT, TIME_SLOT)
 TO INDIVIDUAL COMMAND(CONTROL_UNIT, TIME_SLOT) .

Figure 6. Example of part of a hierarchically structured PROCESS.

Software Architecture for Parallel Processors Page 11

MESSAGE
 1 SYNC_CODE CHAR 6
 ALIAS VALID VALUE '101010',
 '010101'
 1 TYPE STATUS FORMAT_A
 FORMAT_B
 1 CONTENT CHAR 46

FORMAT_A REDEFINES MESSAGE
 1 PAD CHAR 14
 1 HEADER
 2 PRIORITY STATUS FLASH
 IMMEDIATE
 ROUTINE
 2 ORIGIN INDEX
 2 DESTINATION INDEX
 ALIAS BROADCAST VALUE 0
 1 BODY
 2 LENGTH INTEGER
 1 TRAILER
 2 MESSAGE_NUMBER INTEGER
 2 TIME_SENT REAL
 2 TIME_RECEIVED REAL
 2 ACKNOWLEDGEMENT STATUS RECEIVED
 NOT_RECEIVED
 2 LAST_SYMBOL CHAR 2
 ALIAS TERMINATOR VALUE '\\', '//', '<<','>>'

FORMAT_B REDEFINES MESSAGE
 1 PAD CHAR 14
 1 HEADER
 2 SOURCE INDEX
 2 SINK INDEX
 1 BODY
 2 CONTENTS CHAR 42

Figure 7. Example of a hierarchically structured state vector (Resource).

 When building complex software, human translation is simplified if a language supports
obvious representation of physical behavior. The examples in Figures 7 and 8 are taken directly
from large detailed simulations of Packet Radio networks. With hierarchical data structures like
those shown, one can represent the complex algorithms associated with physical systems with
ease. This is illustrated in the above figures. Actual systems may entail more complex resources
and processes than those shown, but are easily understood by subject area experts.

 Not shown in Figure 7 are the QUANTITY clauses used in Figure 5. Likewise, similar
corresponding subscripts in Figure 5 are not used in Figure 8. This is because the resource and
process pair are part of an instanced module, where instances are automatically handled at the
module level, being set when a process within an instanced module is CALLed or SCHEDULEd.
Moving instance implementation to the module level substantially enhances understanding of the
code.

Software Architecture for Parallel Processors Page 12

 PROCESS: RECEPTION

 RESOURCES: TERMINAL PARAMETERS INSTANCES: TRANSMITTER
 MESSAGE FORMATS RECEIVER
 TRANSCEIVER

START_RECEPTION
 IF TRANSCEIVER IS IDLE
 EXECUTE GOOD_RECEPTION
 ELSE IF TRANSCEIVER IS RECEIVING
 EXECUTE CONFLICTING_RECEPTION
 ELSE IF TRANSCEIVER IS TRANSMITTING
 EXECUTE CONFLICTING_BROADCAST .

GOOD_RECEPTION
 IF SIGNAL_TO_NOISE_RATIO IS GREATER THAN

RECEIVER_THRESHOLD
 SET TRANSCEIVER TO RECEIVING
 ADD SIGNAL POWER TO POWER_AT_RECEIVER
 CALL DECODE_MESSAGE
 ELSE EXIT THIS RULE .

 IF SYNC_CODE IS VALID
 AND LAST_SYMBOL IS A TERMINATOR
 AND MESSAGE TYPE IS FORMAT_A
 EXECUTE SEND_ACKNOWLEDGEMENT .

CONFLICTING_RECEPTION
 IF POWER_AT_RECEIVER IS GREATER THAN SIGNAL_POWER
 SCHEDULE ABORT_RECEIVE NOW .

CONFLICTING_BROADCAST
 CANCEL END_RECEIVE NOW
 SCHEDULE START_RECEIVE IN EXPON(0.83) MILLISECONDS
 WITH PRIORITY 80

SEND_ACKNOWLEDGEMENT
 MOVE ACKNOWLEDGEMENT TO TRANSMIT_MESSAGE_BUFFER
 IF DESTINATION IS BROADCAST
 SEARCH RECEIVER_CONNECTIVITY_VECTOR OVER RECEIVER
 EXECUTING TRANSMISSION
 WHEN LINK IS GOOD
 ELSE EXECUTE TRANSMISSION .

TRANSMISSION
 SCHEDULE RECEPTION
 IN LINK_DELAY MICROSECONDS
 USING TRANSMITTER, RECEIVER

Figure 8. Example of a hierarchically structured transformation (Process).

 Selection of the proper type of resource is a critical architectural decision when designing
complex software systems. Resource types determine the simplicity of the architecture, invoking
substantial VisiSoft facilities that are built into the environment. From the Visual Development
Environment (VDE), designers can create or modify resources using the corresponding buttons
and panels. The panels provide the ability to explicitly specify the types of resources desired and
enter the corresponding information required for a given type. Each resource must be explicitly
defined as one of the following sharing types.

Software Architecture for Parallel Processors Page 13

Table 1. VisiSoft Resource Types.

Resources hold state data that may be organized in a hierarchical manner. It
can be shared by several processes or dedicated to a single process in a single
task. Connection to either a file or communications channel makes the
resource “dedicated” to a single process.

A resource with a memory template, typically for a utility or library module.
Shared Alias resources are outlined in red. They are provided a pointer to the
actual resource. See examples below for more details.

A Local Inter-Task resource allows a family of tasks to share data. VisiSoft
handles the OS level memory management. Local Inter-Task resources are
used when one task is responsible for “STARTing” another one that shares
the same local Inter-Task resource. Local Inter-Task resources are outlined
in green. See examples below for more details.

Global Inter-Task resources are similar to Local Inter-Task resources. A
Global Inter-Task resource is used to allow two tasks to share data when they
are RUN independently rather than when one task STARTs the other. Global
Inter-Task resources are used for SYSTEM level EVENTS. They are
outlined in purple. See VSE examples below for more details.

An Inter-Processor resource is used to share data between IND modules on
different processors in the same task running on a parallel processor. Inter-
Processor resources are outlined in blue. See examples below for more
details.

PANEL resources are used to support graphical panel interfaces for input and
output of information, which can include icons, scrolling lists, etc. The
contents of a PANEL resource are created and modified using the Panel
Library Manager (PLM) - see the PLM Section of the RTG Manual. The
contents of a PANEL resource may be viewed, but not changed with a text
editor. Red text is used to label a PANEL resource.

An HLA resource supports the use of High Level Architecture for
communications between disparate tasks in a multi-task environment. This
resource and an associated HLA event handler enable easy use of HLA from
within a VSE task. Details on the use of this resource type are described in
Section 15 on HLA Interface. An HLA resource is labeled with blue text.

A resource describing the record(s) on the file to
which it is attached. The FILE_NAME identifies the
name of the actual file to be accessed.

A resource describing the TCP/IP channel to which it
is attached. The number on top of the channel icon is
the PORT number and that underneath is the
SERVER ID.

 Table 1 above provides another illustration of the facilities required for engineering the
architectures of complex software systems.

Software Architecture for Parallel Processors Page 14

VisiSoft Module Types

 There are four types of modules that make up the layers of a software design hierarchy.
These types provide different levels of protection with regard to their reuse in different
hierarchies. Both elementary and hierarchical modules can reside within each type. With the
exception of instanced utilities, modules may only appear once in a drawing. The rules for these
types are described below with examples that follow.

• Modules - have a blue border. These are the basic building blocks in a task. In
the CAD system described here, modules may be decomposed hierarchically, i.e.,
they may contain submodules and sub-submodules, etc. Modules may only
appear in a single drawing in a user directory, and are meant to be unique, i.e., not
reused, across directories.

• IND Modules - have a blue border. IND Modules are Modules that can only
share Inter-Processor (IP) Resources - and only with other IND_Modules. When
using parallel processors, IND_Modules must be the highest level modules on a
processor. IND_Modules may reside on the same or different processors.

• Utility Modules - have a green border. These are modules that are reused by
processes in the same directory, and can appear in more than one hierarchy in
different drawings. They are typically used to manage separate databases or
perform utility type functions. The green color distinguishes them for change
protection. If they are changed to accommodate a different requirement, that
change must be compatible with the other processes that use them, since the
change is automatically embodied in them all. A separate copy resides on each
processor that uses it.

• Library Modules - have a gold border. These are more highly protected utility
modules that can be shared from different directories and different computers.
They are stored as object modules in special object library files. The source only
appears in the directory where they are maintained. Processes in a library module
are called from an application using their process name, module name, and library
name. Since each of these names must be unique within the next level of
hierarchy, there can be no duplicate names when linking to library modules in the
CAD environment described here. A separate copy resides on each processor that
uses it.

The functions of a library module may be upgraded while at the same time
preserving the original module in the library for prior users. Users can call the
new function using the same process name within the same library by using the
new module name. The existing CAD system has a large set of libraries that
support various applications, including 3D graphics, that are shared easily.

The CAD libraries have been designed to be controlled separately under special
protection mechanisms. But given access to a library directory, the responsible
person sees everything that is needed to allow for ease of changes and testing.
Library directories typically contain regression test drivers and data sets to ensure
changes meet all prior, as well as new requirements.

Software Architecture for Parallel Processors Page 15

INITIATING AND TERMINATING VSE TASKS

 Implementation of operating systems and real-time control systems require multiple tasks.
VisiSoft Tasks can be initiated and terminated in different ways. The approach depends upon the
type of task desired. Global or “top level” tasks are initiated using the RUN statement.

GLOBAL VSE TASKS

 The RUN statement can be used to RUN a task directly, or to initiate a script that RUNs a
task. In either case, a Global VSE Task is initiated. In Figure 11 below, TASK_1 is a Global
Task that RUNs TASK_2, another Global Task. TASK_2 then RUNs TASK_3 which becomes
a third Global Task.

Figure 11. An example of VSE TASK TREES.

 Once a Global Task is running, it may initiate additional tasks. These additional tasks
may be Global or Local. Global VSE tasks may share GLOBAL Intertask resources with other
GLOBAL tasks. Global tasks may only be terminated by themselves.

LOCAL VSE TASKS

 Any VSE task may use the START statement to start a LOCAL task. Tasks that are
STARTed by another VSE task are LOCAL to the task that STARTs them, and are considered
part of the STARTing Task’s family. In Figure 11, TASK_2 starts Local tasks TASK_2_1 and
TASK_2_2. They become part of TASK_2’s family’s tree. Each of these tasks starts the two
below it. TASK_2_1_1 is part of TASK_2_1’s family tree. TASK_2_2_2 is not, but belongs to
TASK_2_2’s family tree as well as that of TASK_2.

Software Architecture for Parallel Processors Page 16

 Local VSE tasks may be terminated by themselves. They may also be terminated by a
task that is a higher member of the tree to which they belong. They are also terminated
automatically when a task that is a higher member of the tree to which they belong is terminated.

USE OF SHARED AS - ALIASED RESOURCES

 When a utility is CALLed directly from more than one process, the calling processes
typically share a resource whose attribute structure is common, or ALIASed, with the utility.

 Referring to Figure 3-7, SHARED AS resource UTR_INT is ALIASed as resources
UMR_1 and UMR_2. The resource structure template used by process UTP is UTR_INT.
When UMP_1 or UMP_2 calls UTP, UTP will use either resource UMR_1 or UMR_2
respectively. The attributes used in UMR_1 or UMR_2 can be different, as long as the data
structure they represent maps into the template defined by UTR_INT. The template defined by
UTR_INT is available to as many calling processes of UTP as desired, without any need to
modify UTP. To accomplish this, the designer must click SHARED ALIAS’D in the Sharing
type section of the panel while creating the resource in the CALLed utility. For example,
UTR_INT would then be defined as SHARED ALIAS, and its outline would be colored red.

 Any resource connected to a SHARED ALIAS resource that resides in the directory
(library modules may not) automatically becomes a SHARED AS resource to the ALIAS
resource identified in the called process to be used. For example, UMP_1 uses UMR_1
SHARED AS UTR_INT when calling UTP. Up to eight alias resources can be connected to
each SHARED AS resource in a calling process.

Figure 9. Use of an ALIASed Resource.

Software Architecture for Parallel Processors Page 17

USE OF INTERTASK RESOURCES

 Intertask resources afford communications between multiple tasks, as supported by a
multitasking operating system. VSE provides special facilities that eliminate the need for
designers to deal with the operating system and special shared memory calls. An intertask
resource is used the same way as a normal shared resource, except that it is shared across tasks.
In Figure 3-8, processes that share intertask resources can access the attributes of those resources
just as normal resources. When concurrent tasks share an intertask resource, it is up to the
designer to use the facilities to insure data coherency, i.e., that data is not updated incorrectly,
e.g., when one task writes over what another expects to be unchanged.

Figure 10. Use of INTERTASK resources.

 The difference between LOCAL and GLOBAL intertask resources is illustrated by the
colors in Figure 3-8. By virtue of its LOCAL intertask resources, COMM_CONTROLLER is
part of a task family with the INTERACTIVE_MONITOR. The GSS task may or may not be
part of the family. It may still share global intertask resources.

 When TASK_A interfaces with TASK_B, and TASK_B may be sharing intertask
resources with other tasks, (e.g., RTG), then the names of these resources must be known for
TASK_B to be part of a TASK_A family. If members of an intertask family share different
intertask resources that happen to have the same name, they will be considered the same - as part
of the family. A case in point is when a pair of tasks both use RTG. These tasks must not be
part of the same family.

Software Architecture for Parallel Processors Page 18

 USE OF INTERPROCESSOR RESOURCES

 To maximize speed of full duplex communications, one must limit Inter-Processor (IP)
resource connections to One-To-One and One-To-Many, as shown in Figure 3-9. With this
approach, only processes inside the IND module containing an IP Resource may write to it. This
ensures that only one process can write to an IP resource at a time. This is the easiest approach
for an application expert to use to create the best (fastest) architecture.

IPA

IPB

PROCESSOR A

INTER-PROCESSOR COMMUNICATIONS

RES_AO_IP

RES_BO_IP

IND_MODULE_A

PUT_
RES_AO_IP

GET_RES_
AB_IP

IPC_A

AO

ABI

BO

BAI

PROCESSOR B

INTER-PROCESSOR COMMUNICATIONS

RES_B0_IP

RES_AO_IP

IND_MODULE_B

PUT_
RES_BO_IP

GET_RES_
AO_IP_B

IPC_B

IPB

IPA

PROCESSOR C

INTER-PROCESSOR COMMUNICATIONS

RES_AO_IP

PUT_
RES_CO_IP

GET_RES_
AO_IP_C

IND_MODULE_ CIPC_C

RES_C0_IP CO

CAI

IPC

IPA

IPC_Arch 01/23/14

Figure 3-9. IP Communications (IPC) Architecture contained in the Run-Time System.

Software Architecture for Parallel Processors Page 19

 Considering the most difficult application that PSI has faced - determination of Electro-
Magnetic Wave propagation, this approach does not impose any restriction on architects that are
knowledgeable in the application they are building. It does help them to develop and enforce
good architectures that maximize run-time speed.

 When using VSE Inter-Task Resources, the resource is shared directly between tasks.
However, Inter-Processor (IP) Resources are effectively copied between processors
automatically by the IP Communications (IPC) system. Copies must be RELEASEd by the
module that contains the IP resource, and ACCESSed by the module wanting to read it. Only
processes in the same IND module can write to an IP resource, and copies of IP Resources are
maintained within each IND module that reads the IP resource. When a process that writes to an
IP Resource completes, IPC code at the end of that process updates a system resource in the IPC
module, indicating that a modification has been made.

 Resource coherency of IP Resources is implicit because memory is moved using a single
instruction, blocking out other instructions while it is performed. This implicitly ensures
resource coherency with no overhead. Both the reading and writing processes may run
concurrently. By making copies, memory is used to gain speed. All of this simplifies the IPC
architecture in the VPOS Run-Time System.

Architecture Of An Instanced IP Resource Facility

 When using parallel processors, particularly in a simulation, one often uses instanced
IND modules. This is extremely convenient since instance pointers are handled implicitly within
an instance that is scheduled or called by a process that specifies the instance to be used while
memory is copied explicitly. Automatic instancing of the corresponding IP Resources provides
the same level of simplification to the user. Equally important it provides a significant
simplification of the architecture for IP Resource communication.

SUMMARY

 Design of complex automation systems that require advanced computer technology
represents a difficult engineering problem. This paper briefly skims aspects of system design to
illustrate some of the top level concepts. It is intended to demonstrate an architectural
perspective that equates to similar engineering fields, e.g., aeronautical, architectural, electrical,
etc. In those fields, the people that implement the construction of an end product are not the
designers. Carpenters, electricians, masons, and plumbers require years of training to achieve
the skills necessary to perform their specific tasks. But their skill sets can be learned on much
smaller projects. The engineering skills required to design skyscrapers requires years of working
with large complex structures. They cannot be learned on dog houses. Learning to program
snippets of code using different languages is akin to learning the trades.

 It has been the purpose of this paper to show that complex automation problems cannot
be solved with programming languages. The language must support architectural requirements,
but it is the architectural technology that is required to design large complex systems and
simulations, particularly on parallel processors. This paper has been aimed at disclosing this
pressing requirement to refocus the software field toward an engineering discipline.

Software Architecture for Parallel Processors Page 20

REFERENCES

[1] Ledgard, Henry F., The Emperor with No Clothes, Communications of the ACM, Oct 2000.

[2] Parnas, D., "Education for Computer Professionals," IEEE Computer, January 1990, pp 17-22.

[3] Beyer, Kurt W., Grace Hopper and the Invention of the Information Age. Cambridge, MA:
The MIT Press, (2009). ISBN 978-0-262-01310-9.

[4] Yasushi Kambayashi and Henry F. Ledgard, “The Separation Principle - A Programming
Paradigm” IEEE Software, March/April 2004

[5] Broy, Manfred, The “Grand Challenge” in Informatics: Engineering Software-Intensive Systems,
Computer, IEEE Computer Society, 2006.

[6] Poore, Jesse H., A Tale of Three Disciplines and a Revolution, IEEE Computer Society, Jan 2004.

[7] Cave, W.C., et.al, Software Theory For Parallel Processors, Visual Software International
Technical Report, March 2016, Spring Lake, NJ.

[8] Deming, W. Edwards, Out of the Crisis, MIT CASE, Cambridge, MA, 1992.

[9] Ledgard, H., et al, "The Natural Language of Interactive Systems," CACM No. 10, October 1980,
pp 556-563.

[10] Shannon, C.E., A Mathematical Theory Of Communication, BSTJ, Vol.27, pp 379 & 623, Jul &
Oct 1948.

