
HISTORY OF THE C PROGRAMMING LANGUAGE

This material was written by Don Anselmo, an AT&T / Bell Laboratories Engineer and Manager
(1958 to 1986). As Director of Computer Development at the Labs, Don was intimately familiar
with the development of UNIX, C, C++, and the ATT PC Computer line. The paragraphs below
are taken from the listed References.

In 1969, after cancellation of the Multics project, a collaborative effort to build a multi-user
operating system (between GE, Bell Labs and Project MAC at MIT), participating members of
the Bell Labs staff were still intent on creating such a facility. So an effort was started at the
laboratories by Ken Thompson, Dennis Ritchie, and others to design the file system for a new
operating system.

In his spare time, Thompson had developed a computer game called "Space Travel" that
simulated the motion of planets in the solar system. A player could cruise between planets,
attempting to land the ship. First written on Multics and then rewritten in FORTRAN for the
GECOS operating system on a GE 635 computer, the game's display was jerky and hard to
control because the player had to type commands to control the ship. Also, it cost about $75 in
CPU time on the GE 635. Thompson soon found a little-used PDP-7 computer with an excellent
display terminal, and with help from Dennis Ritchie, Space Travel was ported to this machine.
This was written in assembly language for a cross-assembler that ran under GECOS and
produced paper tapes to be carried to the PDP-7. Though it made a very attractive game, it was
difficult to prepare the programs for the PDP-7. Thus, the PDP-7 became a natural candidate to
develop what was to become the UNIX operating system, and development proceeded in the
PDP-7’s bare assembler - with no loader or link-editor.

One day Thompson decided that Unix needed a FORTRAN compiler, so he started to design it.
After a day or so, he decided not to do it. Instead, he wrote a very simple language he called B,
which was based on the word-oriented BCPL. It was also influenced by Thompson’s taste for
spartan syntax, and the very small space in which the compiler had to fit to run on the PDP-7. It
worked, but there were problems. First, the implementation was interpreted, so it was slow.
Second, the word-orientation of B did not match the new byte-oriented machines, like the new
PDP-11.

In 1971, UNIX was moved to a PDP-11. Although the first version of UNIX was written in
assembler, Thompson's intention was that it be written in a high-level language. Ritchie used the
PDP-11 to add types to B, which for a while was called NB for "New B.” Then he started to
write a compiler for it. The first phase of C included some language changes from B, i.e., adding
the type structure without much change in the syntax, and the compiler. This version of C did
not have structures to support tables. After adding this and some other facilities, a concerted
effort was made to redo the operating system in C.

In their book, The C Programming Language, Kernighan and Ritchie, [5], C is described in the
first sentence of the Preface: “C is a general-purpose programming language which features
economy of expression,” In Chapter 0, it is described as a relatively “low level” language,
and that “A compiler for C can be simple and compact. Compilers are also easily written; using
current technology, one can expect to prepare a compiler for a new machine in a couple of
months, ... “

Quotes From Dennis Ritchie, in the UNIX Oral History Project [4].

C was an adaptation of B; that was pretty much Ken's. B actually started out as system Fortran.
Ken one day said the PDP-7 Unix system needed a Fortran compiler in order to be a serious
system, and so he actually sat down and started to do the Fortran grammar. This was before yacc;
he actually started in TMG. ... Anyway, it took him about a day to realize that he didn't want to
do a Fortran compiler at all. So he did this very simple language called B and got it going on the
PDP-7. B was actually moved to the PDP-11. A few system programs were written in it, not the
operating system itself, but the utilities. It was fairly slow, because it was an interpreter. And
there were sort of two realizations about the problems of B. One was that, because the
implementation was interpreted it was always going to be slow. And the second was that, unlike
all the machines we had used before, which were word-oriented, we now had a machine that was
byte-oriented and that the basic notions that were built into B, which was in turn based on BCPL,
were just not really right for this byte-oriented machine. In particular, B and BCPL had notions
of pointers, which were names of storage cells, but on a byte oriented machine in particular and
also one in which the -- had 16-bit words and -- I don't think it did originally, but they were
clearly intending to have 32-bit and 64-bit floating point numbers. So that there all these
different sizes of objects, and B and BCPL were really only oriented toward a single size of
object. From a linguistic point of view that was the biggest limitation of B; not only the fact that
all objects were the same size but also that just the whole notion of pointer to object didn't fit
well with So, more or less simultaneously, I started trying to add types to the language B, and
fairly soon afterwards tried to write a compiler for it. Language changes came first. For a while it
was called NB for "New B"; it was also an interpreter, and I actually started with the B
compiler. ... because C was written in a language very much like itself, at every stage of the
game, so, yes, it must have started with the B compiler and sort of merged it into the C compiler
and added the various, the type structure. And then tried to convert that into a compiler.

The original version of C did not have structures. So to make tables, e.g., process tables and file
tables, was really fairly painful. One of the techniques was to define names who were actually
small constants and then use these essentially as subscripts to pointers -- basically a pointer
offset by a small constant that was named; the name was really the equivalent of the name of a
field of a structure. It was clumsy; I guess people still do the same sort of thing in Fortran.

Over the year, I added structures and probably made the compiler somewhat better, so over the
next summer, we made the concerted effort to redo the whole operating system in C.

References

1. The C Programming Language, Kernighan and Ritchie, Prentice Hall, 1978.

2. The Unix Time-sharing System, BSTJ, Vol. 57 No.6, July- August 1978.

3. Evolution of the Unix Time-sharing System, Ritchie, D.M., ATT/BLTJ, Vol. 63 No.8, Oct. 1984.

4. The Unix Oral History Project, Michael S. Mahoney,
http://www.princeton.edu/~mike/expotape.htm

5. Development of the C Language, Dennis M. Ritchie, Second History of Programming Conf., 1993,
http://cm.bell-labs.com/cm/cs/who/dmr/chist.html

BRIEF RESUME OF DON ANSELMO (1936 - 2006)

EDUCATION
 BS, Electrical Engineering - VPI
 MS, Electrical Engineering - NYU
 CDT Program, Bell Telephone Laboratories
 Post Grad Mathematics - Stevens Institute

HONORS
 ETA KAPPA NU
 PHI KAPPA PHI
 TAU BETA PI

GENERAL BACKGROUND

Director Interconnection Technology, ATT Bell Labs
Director of Computer Development, ATT Bell Labs †
Director of Product Management, ATT Technologies ††
President and COO, Open Connect Systems Corp.
Vice President, Technical Systems Division - Motorola Computer Group
Director, Telephony Products Office - Satellite Communications, Motorola
Director, Strategic Program Development, Network Solutions Sector, Motorola
Consultant/Director Prediction Systems, Inc.

† As Director of Computer Development, Bell Labs: Responsible for the development of 3B
computer line and the UNIX operating system, contributing to the commercialization of UNIX as
an ATT product.

†† As Director of Product Management, ATT Technologies: Oversaw product management for
the 3B computer line, ATT PC, and Olivetti relationship for 3B distribution in Europe.
Controlled management of corporate investments by ATT in several third party strategic
relationships. Part of the board membership representing ATT in strategic investments.

